In the "just found on the web category": Mark Verbrugge, Director, Chemical Sciences and Materials Systems Lab General Motors Research & Development Center, gives a Berkeley Lab Environmental Energy Technologies Division lecture (this lecture was given in November of 2009 but it's still timely). The first portion of the lecture looks at global energy challenges to trends in personal transportation. A short overview of technology associated with lithium ion batteries for traction applications is followed by new research results that enable adaptive characterization of lithium ion cells. "Experimental and modeling results help to clarify the underlying electrochemistry and system performance. Specifically, through chemical modification of the electrodes, it is possible to place markers within the electrodes that signal the state of charge of a battery through abrupt voltage changes during cell operation, thereby allowing full utilization of the battery in applications," Verbrugge says. In closing, he highlights some promising materials research efforts that are expected to lead to substantially improved battery technology.
Mark Verbrugge started his GM career in 1986 with the GM Research Labs after receiving his doctorate in Chemical Engineering from the College of Chemistry at the University of California (Berkeley). In 1996, Mark was awarded a Sloan Fellowship to the Massachusetts Institute of Technology, where he received an MBA. Mark returned from MIT in 1997 to join GM's Advanced Technology Vehicles (ATV) as Chief Engineer for Energy Management Systems. In 2002, Mark rejoined the GM Research Labs as Director of the Materials and Processes Lab, which maintains global research programs ranging from chemistry, physics, and materials science to the development of structural subsystems and energy storage devices. In 2009, the Lab was expanded and renamed Chemical Sciences and Materials Systems Laboratory. Mark has published and patented in topic areas associated with electroanalytical methods, polymer electrolytes, advanced batteries and supercapacitors, fuel cells, high-temperature air-to-fuel-ratio sensors, surface coatings, compound semiconductors, and various manufacturing processes related to automotive applications of structural materials.
Mark is a Board Member of the United States Automotive Materials Partnership LLC and the United States Advanced Battery Consortium LLC, an adjunct professor for the Department of Physics, University of Windsor, Ontario, Canada, and he serves as the GM Technical Director for HRL Laboratories LLC, jointly owned by GM and Boeing.
Mark's research efforts resulted in his receiving the Norman Hackerman Young Author Award (1990) and the Energy Technology Award (1993) from the Electrochemical Society as well as GM internal awards including the John M. Campbell Award (1992), the Charles L. McCuen Award (2003), and the Boss Kettering Award (2007). Mark received the Lifetime Achievement Award from the United States Council for Automotive Research in 2006 and was elected to the National Academy of Engineering in 2009.
This blog is focused on trends in battery technology and other types of energy storage that are used for smart grid load leveling and stabilization, and as back-up power for renewable energy sources such as photovoltaics/solar power, hydro and wind energy. Trends in lithium ion batteries, lead-acid, metal-air, NaS (sodium sulfur), ZnBr (zinc-bromine) batteries will be covered, as well as compressed air energy storage (CAES), flywheels, fuel cells and supercapacitors.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment